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O(N) models
• They have played an important role in our understanding 

of second order phase transitions.


• N-component vector order parameter　　　　　　　　　　
　　N=1…Ising, N=2…XY, N=3…Heisenberg Model


• The playground of almost all the theoretical approaches…
Exact solution (2d  Ising), Renormalization group（d=4-ε, 
2+ε expansion), conformal bootstrap

Everything is known about the criticality of O(N) models?                                       
…This is what we want to challenge in this work.



Common wisdom on the criticality 
of O(N) models (finite N case)

A nontrivial fixed point        with n relevant (unstable) directions 
branches from  G at       . (Wilson-Fisher FP, which describes second 
order phase transition, at d=4 and the tricritical FP         at d=3….)
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Below the critical dimension                           , the         term becomes 
relevant around the Gaussian FP (G).

dn = 2 + 2/n �2n

Tn
dn

T2



• At              , in generic dimensions 2<d<4, only Gaussian 
(G) and Wilson-Fisher (WF) FPs have been found.


• Exceptional case: At                       , there exists a line of 
FPs starting from G and it terminates at BMB (Bardeen-
Moshe-Bander) FP. 


• LPA of NPRG is believed to be exactly soluble.

Common wisdom on the criticality of　
O(N) models at 　　　　　　　           　　

N = 1

N = 1

dn = 2 + 2/n



• What occurs if we follow T2  from                           
to                           continuously as a function of 
(d,N)?…It seems that nobody asked this question!

Summary of common wisdom and                     
a simple paradox

(d = 3�, N = 1)
(d = 2.8, N = 1)



Possible scenarios

• T2  disappears. (Collision with another FP? )　　 

• T2 becomes singular. 

         



Possible scenarios

• T2  disappears. (Collision with another FP? )　　 

• T2 becomes singular. 

We shall see that both possibilities are realized 
depending on the path followed from                       
to                          .                         

(d = 3�, N = 1)
(d = 2.7, N = 1)



Non perturbative 
renormalization group (NPRG) 
• Modern implementation of Wilson’s RG that takes the 
fluctuation into account step by step in lowering the cut-off 
wavenumber k,  in terms of wavenumber-dependent effective 
action                                                        �k

Microscopic Hamiltonian

Effective action (Free energy), 
where all the fluctuations are  

taken into account. 

H

k = ⇤k = ⇤� �⇤k = 0
……



NPRG equation
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effective average action is to integrate in Z
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fluctuations of large wave-numbers (rapid modes) com-
pared to k while freezing the others (slow modes) and
to progressively decrease k. R
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transform of R
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(x), plays the role of separating rapid
and slow modes: It almost vanishes for |q| > k so that
the rapid modes are summed over and is large (of order
k2) below k so that the fluctuations of the slow modes
are frozen. We define as usual W
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where J
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is defined such that Eq. (7) holds for fixed '
i
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From this definition one can show that
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where the cutoff ⇤ is the inverse of the lattice spacing
a. Equations (9) imply that �
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interpolates between the
hamiltonian of the system when no fluctuation has been
summed over, that is, when k = ⇤, and the Gibbs free
energy � when they have all been integrated, that is,
when k = 0. We define the variable t, called “RG time”,
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for ↵,↵0

= 1, 2, · · ·N and i, i0 = 1, 2.

IV. TRUNCATION OF THE NPRG EQUATION

It is generally not possible to solve exactly the above
flow equation and several approximations are employed in
practice. In this paper, we employ the so-called LPA (lo-
cal potential approximation) or LPA’. In these schemes,
�

k

is approximated by a series expansion in the gradient
of the field, truncated at its lowest non trivial order:
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, i = 1, 2 are constant fields and ⌦ is the vol-
ume of the system. Z
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in both LPA and LPA’. It is set to one in
LPA: ZLPA
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= 1, which leads to a vanishing anomalous
dimension: ⌘ = 0. In LPA’ calculations, the anomalous
dimension ⌘ is obtained from the flow of Z
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We give a precise definition of Z
k

in Appendix A as well
as of ⌘. At criticality, the k-dependent effective action is
attracted towards the fixed point solution of the NPRG
equation once it is expressed in terms of the dimensionless
renormalized fields ˜ 
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We expand the fixed point potential in the following form
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and solve the flow equation for the coupling constants
ã
n,m

. In the following calculations, we truncate the ex-
pansion at the 14-th order of  

i

for i = 1, 2.

V. RESULTS FOR FINITE BUT LARGE N

Here we explain the results for finite N as shown in
Fig. 1. C�, C�� and C��� exist in d0

c

(N) < d < 4,
d0
c

(N) < d < d00
c

(N) and 2 < d < d00
c

(N), respectively,
for sufficiently large N & 20. C�, C�� and C��� are
the multicritical fixed points with two, three and two
relevant directions. There occur the following saddle-
node bifurcations: In decreasing d with fixed N & 20,
firstly in d = d00

c

(N), C�� and C��� appear as a pair of
unstable and stable fixed points with respect to the RG
trajectory joining them. Secondly in d = d0

c

(N), C� and
C�� fixed points collide with each other and vanish.

In Fig. 1, we also plot the curve N
c

(d) on which C�
and C�� fixed points collides with each other and van-
ish. This curve N

c

(d) was obtained with another full-
funtional treatment of the local potential approximated
NPRG flow equation, which will be explained elsewhere.

For N & 20, we have confirmed that increasing the or-
der of truncation only slightly changes d0

c

(N) and d00
c

(N).
For smaller d and N , our field expansion method is not
very accurate because of poor convergence of the ex-
pansion, which have been often the case for NPRG cal-
culations. From this result, we cannot see the behav-
ior of d0

c

(N) and d00
c

(N) for smaller N and more ac-
curate numerical method would be necessary for that
purpose. For the moment, nevertheless, one can make
the following conjecture by simple extrapolation of the

NPRG equation (Wetterich, Phys. Lett. B, 1993) is 
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FIG. 2. The two curves Nc(d) and N ′
c(d) respectively defined

by T2 = C3 and C2 = C3 and the curve 3.6/(3 − d). Nc(d)
is calculated with the LPA (red circles) and at order 2 of the
derivative expansion (blue squares). We show a path joining
the point Q located at (d = 3−, N = 40) to the point at
N = ∞ and d = 2.8.

Let us first assume that for the O(N) models, the ex-
act RG flow equation of the Gibbs free energy Γ – also
called effective action – is continuous in d and N . Then,
assuming moreover that the FPs Γ∗ of these flows are
well-defined functions of d and N , they must also be
continuous functions of these parameters and can there-
fore be followed smoothly in the (d,N) plane. For con-
stant fields, the functional Γ∗[φ] reduces to the effec-
tive potential U∗(φ). If U∗ can be Taylor expanded:
U∗(φ) =

∑
m g∗m(φ2)m with φ = ⟨ϕ⟩, the smoothness of

Γ∗ as a function of d and N implies that of the g∗m which
can therefore be followed continuously along a given path
of the (d,N) plane. Notice that we do not need in the
following to expand U∗. However, the same continuity
argument can be used on the function U∗ itself rather
than on its couplings.

Let us now consider for instance the tricritical FP T2.
The paradox appears when we try to follow smoothly T2

from a point in the (d,N) plane where we know from
perturbation theory that it exists to a point where, ac-
cording to the common wisdom, it is believed not to exist.
We consider for instance the path shown in Fig. 2 start-
ing at Q in d = 3− and N = 40 and going to N = ∞
in d = 2.8. How can we solve the apparent contradiction
that T2 should evolve continuously and that it exists at
one end of the path, that is, in Q, and not at the other
end? The simplest solution is that either T2 disappears
before reaching N = ∞ or it becomes singular at N = ∞.
We shall see in the following that both these possibilities
are indeed realized depending on the path followed to
reach N = ∞. In particular, we shall see that there ex-
ists a line Nc(d) (or equivalently dc(N)), see Fig.2, such
that when T2 is followed along a path that crosses this
line – such as the path shown in Fig. 2 that starts in
Q – it collapses with another FP on the line Nc(d) and
disappears. This is why T2 is not found at N = ∞ for
d < 3. And the paradox is now clear: According to the

common wisdom, no known FP is available for collapsing
with T2. We must therefore conclude that the common
wisdom yields an incomplete picture and that there is a
new FP – that we indeed find and call C3 – with which T2

collapses on Nc(d). Part of the solution to the paradox
above is that C3 is nonperturbative: It cannot emerge
from G in any upper critical dimension because the sta-
bility of G in the O(N) models is well-known for all d and
N from perturbation theory. This is why C3 has never
been found previously. Some natural questions are then:
What is the stability of C3? Does it exist in d = 3 for
some values of N? Is it the only nonperturbative FP of
the O(N) models? Since, most probably, it does not ap-
pear alone, where does it appear and together with which
other FP? Does it exist in the large-N limit and why is
it not found in the usual 1/N expansion [2, 3, 12]? It is
the aim of this Letter to provide a first study of these
different questions.
The method of choice for studying FPs beyond per-

turbation theory is the nonperturbative (also called func-
tional) renormalization group (NPRG) which is the mod-
ern implementation of Wilson’s RG. It allows us to de-
vice accurate approximate RG flows. The NPRG is based
on the idea of integrating fluctuations step by step [17].
In its modern version, it is implemented on the Gibbs
free energy Γ [18–21]. A one-parameter family of mod-
els indexed by a scale k is thus defined such that only
the rapid fluctuations, with wavenumbers |q| > k, are
summed over in the partition function Zk. The decou-
pling of the slow modes (|q| < k) in Zk is performed by
adding to the original O(N)-invariant (ϕ2)2 hamiltonian
H a quadratic (mass-like) term which is nonvanishing
only for these modes:

Zk[J ] =

∫
Dϕi exp(−H[ϕ]−∆Hk[ϕ] + J ·ϕ). (1)

with ∆Hk[ϕ] =
1
2

∫
q Rk(q2)ϕi(q)ϕi(−q) – where, for in-

stance, Rk(q2) = αZ̄kq2(exp(q2/k2)− 1)−1 with α a
real parameter and Z̄k the field renormalization – and
J · ϕ =

∫
x Ji(x)ϕi(x). The k-dependent Gibbs free en-

ergy Γk[φ] is defined as the (slightly modified) Legendre
transform of logZk[J ]:

Γk[φ]+ logZk[J ] = J ·φ− 1

2

∫

q
Rk(q

2)φi(q)φi(−q). (2)

with
∫
q =

∫
ddq/(2π)d. The exact RG flow equation of

Γk reads [19]:

∂tΓk[φ] =
1

2
Tr[∂tRk(q

2)(Γ(2)
k [q,−q;φ] +Rk(q))

−1] (3)

where t = log(k/Λ), Tr stands for an integral over q

and a trace over group indices and Γ(2)
k [q,−q;φ] is the

matrix of the Fourier transforms of the second functional
derivatives of Γk[φ] with respect to φi(x) and φj(y).
For the systems we are interested in, it is impossible to

solve Eq. (3) exactly and we therefore have recourse to



Derivative expansion(DE2)
• It is impossible to solve the NPRG equation exactly and we 

have recourse to approximations, 

• Simpler approximations…LPA(η=0), LPA’ approximation
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FIG. 3. Singular point S and the two linesNc(d) (red squares)
and N ′

c(d) (blue stars). Starting from P , the FP T2 is followed
along a clockwise (left) or anti-clockwise (right) closed path
surrounding S. On the clockwise path, T2 becomes C2 after
a full rotation. On the anti-clockwise path, T2 collides with
C3 on Nc(d) and disappears. It actually becomes complex-
valued and remains so all along the dashed path. On N ′

c(d)
it becomes real again but is now C2. The path joining Nc(d)
and N ′

c(d) at fixed N = 33 is also shown in panel (a).

approximations. The most appropriate nonperturbative
approximation consists in expanding Γk[φ] in powers of
∇φ [23–32]. At order two of the derivative expansion, Γk

reads:

Γk[φ] =

∫

x

(
1

2
Zk(ρ)(∇φi)

2 +
1

4
Yk(ρ)(φi∇φi)

2

+Uk(ρ) +O(∇4)

)
.

(4)

where ρ = φiφi/2. Within this approximation, all critical
exponents are accurately computed for all d and N . The
LPA’ is a simpler approximation consisting in setting in
Eq. (4): Yk(ρ) = 0 and Zk(ρ) = Z̄k, a field-independent
field renormalization. From Z̄k is derived the running
anomalous dimension ηt = −∂t log Z̄k that converges at
the FP to the anomalous dimension η. The LPA consists
in setting Z̄k = 1 which implies η = 0. The RG flow
is one-loop exact in the ϵ = 4 − d (or ϵ = 3 − d for
T2) expansion for both the LPA and LPA’ and is also
one-loop exact for the LPA’ for N > 1, in the ϵ′ = d −
2 expansion. Most importantly for what follows, even
within the LPA, the flow of the effective potential Uk

is exact at N = ∞. We give the flow of the effective
potential Uk for any N at the LPA in the Supplemental
Material.

We have numerically integrated the fixed point equa-
tion for the effective potential: ∂tŨ∗ = 0, Eq. (??), at
the LPA and LPA’. As expected, we find T2 for any N
emerging from G in d = 3−. For sufficiently small values
of N , typically N < 19, we find that we can follow this
FP down to d = 2 using the LPA’. For N > 19, we find
that by decreasing d at fixed N , T2 disappears in a di-
mension dc(N) by collapsing with a 3-unstable FP that
we call C3 as already explained above, see Figs. 2 and 3.
We find that the line Nc(d) is asymptotic to the d = 3
axis, see Fig.2, as expected for the disappearance of T2

just below d = 3 at large N . A very good fit at large N
of the Nc(d) curve is 3.6/(3− d), see Fig. 2.
We have checked that the picture above is quantita-

tively stable when we go from the LPA to the order two
of the derivative expansion, Eq. (4), see Fig. 2. This is
completely consistent with the fact that η is very small on
the curve Nc(d) for N sufficiently large and decreases at
largeN which makes the LPA flow of Uk exact atN = ∞.
For instance, for N = 40, we find dc(40) = 2.924 and in
this dimension, η = 1.7 10−3. Thus, although we have
no rigorous proof, we can safely claim that the existence
of C3 is doubtless and that the curve Nc(d) approaches
N = ∞ when d → 3. We show the T2 = C3 FP potential
shape on N = Nc(d) in the Supplemental Material. It is
a regular function of ρ at N = ∞, which is not the case
for the BMB FP, which shows a cusp.
Let us now follow C3 by increasing d. We choose for

instance N = 33 and we follow the path shown in Fig.
3.a starting at dc(N = 33) = 2.90. We find that C3

exists on this path up to d =3.09 which shows that a
nonperturbative FP can exist in d = 3. In d =3.09, it
collapses with a 2-unstable FP, that we call C2 and both
these FPS do not exist for d > 3.09. The FP C2 cannot
be T2 because T2 does not exist above d = 3. By changing
the value of N , we generate a line where C3 = C2 that
we call N ′

c(d), see Figs. 2 and 3.
We find two interesting features of the curve N ′

c(d).
First, the two curves Nc(d) and N ′

c(d) meet in a point,
that we call S, located at (d = 2.81, N = 19), see Figs.
2 and 3. This means that right at S: T2 = C3 = C2. We
also find that S is a singular point: If we follow smoothly
T2 around a closed loop containing S starting for instance
at P = (d = 2.94, N = 30), see Fig. 3, we do not come
back at T2. More precisely, starting from P and following
an anti-clockwise closed path as in Fig. 3.b, T2 collides on
the line Nc(d) with C3 and disappears. More precisely,
it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
comes C2 after a full rotation around S. This is why we
have claimed above that the fate of T2 when N → ∞
depends on the path followed. From a purely mathemat-
ical point of view, the continuity argument for following
smoothly the FPs everywhere in the (d,N) plane and ex-
hibiting the double-valued structure of T2 and C2 makes
sense only after allowing the FPs to be complex-valued
(or, in a Taylor expansion, the g∗m to be complex). For
instance, let us again consider Fig. 3.b. We start at P
with T2 which is very close to G. Beyond the line Nc(d),
T2 becomes complex. It becomes real again when the
path crosses N ′

c(d) and it is then C2 which is far from G.
If we go on following the same path, C2 remains real all
the way but after the second full rotation, it is T2 again.
The second interesting feature of the curve N ′

c(d) is
that it also becomes vertical at large N while being this
time asymptotic to the d = 4 axis, see Fig. 2. We there-
fore conclude that most probably C3 exists at N = ∞
everywhere for d ∈]3, 4[ and C2 for d ∈]2, 4[. However,
we also find that for larger and larger N in d > 3, the
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FIG. 3. Singular point S and the two linesNc(d) (red squares)
and N ′

c(d) (blue stars). Starting from P , the FP T2 is followed
along a clockwise (left) or anti-clockwise (right) closed path
surrounding S. On the clockwise path, T2 becomes C2 after
a full rotation. On the anti-clockwise path, T2 collides with
C3 on Nc(d) and disappears. It actually becomes complex-
valued and remains so all along the dashed path. On N ′

c(d)
it becomes real again but is now C2. The path joining Nc(d)
and N ′

c(d) at fixed N = 33 is also shown in panel (a).

approximations. The most appropriate nonperturbative
approximation consists in expanding Γk[φ] in powers of
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time asymptotic to the d = 4 axis, see Fig. 2. We there-
fore conclude that most probably C3 exists at N = ∞
everywhere for d ∈]3, 4[ and C2 for d ∈]2, 4[. However,
we also find that for larger and larger N in d > 3, the

3

FIG. 3. Singular point S and the two linesNc(d) (red squares)
and N ′

c(d) (blue stars). Starting from P , the FP T2 is followed
along a clockwise (left) or anti-clockwise (right) closed path
surrounding S. On the clockwise path, T2 becomes C2 after
a full rotation. On the anti-clockwise path, T2 collides with
C3 on Nc(d) and disappears. It actually becomes complex-
valued and remains so all along the dashed path. On N ′

c(d)
it becomes real again but is now C2. The path joining Nc(d)
and N ′

c(d) at fixed N = 33 is also shown in panel (a).

approximations. The most appropriate nonperturbative
approximation consists in expanding Γk[φ] in powers of
∇φ [23–32]. At order two of the derivative expansion, Γk
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where ρ = φiφi/2. Within this approximation, all critical
exponents are accurately computed for all d and N . The
LPA’ is a simpler approximation consisting in setting in
Eq. (4): Yk(ρ) = 0 and Zk(ρ) = Z̄k, a field-independent
field renormalization. From Z̄k is derived the running
anomalous dimension ηt = −∂t log Z̄k that converges at
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in setting Z̄k = 1 which implies η = 0. The RG flow
is one-loop exact in the ϵ = 4 − d (or ϵ = 3 − d for
T2) expansion for both the LPA and LPA’ and is also
one-loop exact for the LPA’ for N > 1, in the ϵ′ = d −
2 expansion. Most importantly for what follows, even
within the LPA, the flow of the effective potential Uk

is exact at N = ∞. We give the flow of the effective
potential Uk for any N at the LPA in the Supplemental
Material.

We have numerically integrated the fixed point equa-
tion for the effective potential: ∂tŨ∗ = 0, Eq. (??), at
the LPA and LPA’. As expected, we find T2 for any N
emerging from G in d = 3−. For sufficiently small values
of N , typically N < 19, we find that we can follow this
FP down to d = 2 using the LPA’. For N > 19, we find
that by decreasing d at fixed N , T2 disappears in a di-
mension dc(N) by collapsing with a 3-unstable FP that
we call C3 as already explained above, see Figs. 2 and 3.
We find that the line Nc(d) is asymptotic to the d = 3
axis, see Fig.2, as expected for the disappearance of T2

just below d = 3 at large N . A very good fit at large N
of the Nc(d) curve is 3.6/(3− d), see Fig. 2.
We have checked that the picture above is quantita-

tively stable when we go from the LPA to the order two
of the derivative expansion, Eq. (4), see Fig. 2. This is
completely consistent with the fact that η is very small on
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For instance, for N = 40, we find dc(40) = 2.924 and in
this dimension, η = 1.7 10−3. Thus, although we have
no rigorous proof, we can safely claim that the existence
of C3 is doubtless and that the curve Nc(d) approaches
N = ∞ when d → 3. We show the T2 = C3 FP potential
shape on N = Nc(d) in the Supplemental Material. It is
a regular function of ρ at N = ∞, which is not the case
for the BMB FP, which shows a cusp.
Let us now follow C3 by increasing d. We choose for

instance N = 33 and we follow the path shown in Fig.
3.a starting at dc(N = 33) = 2.90. We find that C3

exists on this path up to d =3.09 which shows that a
nonperturbative FP can exist in d = 3. In d =3.09, it
collapses with a 2-unstable FP, that we call C2 and both
these FPS do not exist for d > 3.09. The FP C2 cannot
be T2 because T2 does not exist above d = 3. By changing
the value of N , we generate a line where C3 = C2 that
we call N ′

c(d), see Figs. 2 and 3.
We find two interesting features of the curve N ′

c(d).
First, the two curves Nc(d) and N ′

c(d) meet in a point,
that we call S, located at (d = 2.81, N = 19), see Figs.
2 and 3. This means that right at S: T2 = C3 = C2. We
also find that S is a singular point: If we follow smoothly
T2 around a closed loop containing S starting for instance
at P = (d = 2.94, N = 30), see Fig. 3, we do not come
back at T2. More precisely, starting from P and following
an anti-clockwise closed path as in Fig. 3.b, T2 collides on
the line Nc(d) with C3 and disappears. More precisely,
it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
comes C2 after a full rotation around S. This is why we
have claimed above that the fate of T2 when N → ∞
depends on the path followed. From a purely mathemat-
ical point of view, the continuity argument for following
smoothly the FPs everywhere in the (d,N) plane and ex-
hibiting the double-valued structure of T2 and C2 makes
sense only after allowing the FPs to be complex-valued
(or, in a Taylor expansion, the g∗m to be complex). For
instance, let us again consider Fig. 3.b. We start at P
with T2 which is very close to G. Beyond the line Nc(d),
T2 becomes complex. It becomes real again when the
path crosses N ′

c(d) and it is then C2 which is far from G.
If we go on following the same path, C2 remains real all
the way but after the second full rotation, it is T2 again.
The second interesting feature of the curve N ′

c(d) is
that it also becomes vertical at large N while being this
time asymptotic to the d = 4 axis, see Fig. 2. We there-
fore conclude that most probably C3 exists at N = ∞
everywhere for d ∈]3, 4[ and C2 for d ∈]2, 4[. However,
we also find that for larger and larger N in d > 3, the
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valued and remains so all along the dashed path. On N ′
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where ρ = φiφi/2. Within this approximation, all critical
exponents are accurately computed for all d and N . The
LPA’ is a simpler approximation consisting in setting in
Eq. (4): Yk(ρ) = 0 and Zk(ρ) = Z̄k, a field-independent
field renormalization. From Z̄k is derived the running
anomalous dimension ηt = −∂t log Z̄k that converges at
the FP to the anomalous dimension η. The LPA consists
in setting Z̄k = 1 which implies η = 0. The RG flow
is one-loop exact in the ϵ = 4 − d (or ϵ = 3 − d for
T2) expansion for both the LPA and LPA’ and is also
one-loop exact for the LPA’ for N > 1, in the ϵ′ = d −
2 expansion. Most importantly for what follows, even
within the LPA, the flow of the effective potential Uk

is exact at N = ∞. We give the flow of the effective
potential Uk for any N at the LPA in the Supplemental
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the LPA and LPA’. As expected, we find T2 for any N
emerging from G in d = 3−. For sufficiently small values
of N , typically N < 19, we find that we can follow this
FP down to d = 2 using the LPA’. For N > 19, we find
that by decreasing d at fixed N , T2 disappears in a di-
mension dc(N) by collapsing with a 3-unstable FP that
we call C3 as already explained above, see Figs. 2 and 3.
We find that the line Nc(d) is asymptotic to the d = 3
axis, see Fig.2, as expected for the disappearance of T2

just below d = 3 at large N . A very good fit at large N
of the Nc(d) curve is 3.6/(3− d), see Fig. 2.
We have checked that the picture above is quantita-
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shape on N = Nc(d) in the Supplemental Material. It is
a regular function of ρ at N = ∞, which is not the case
for the BMB FP, which shows a cusp.
Let us now follow C3 by increasing d. We choose for

instance N = 33 and we follow the path shown in Fig.
3.a starting at dc(N = 33) = 2.90. We find that C3

exists on this path up to d =3.09 which shows that a
nonperturbative FP can exist in d = 3. In d =3.09, it
collapses with a 2-unstable FP, that we call C2 and both
these FPS do not exist for d > 3.09. The FP C2 cannot
be T2 because T2 does not exist above d = 3. By changing
the value of N , we generate a line where C3 = C2 that
we call N ′

c(d), see Figs. 2 and 3.
We find two interesting features of the curve N ′

c(d).
First, the two curves Nc(d) and N ′

c(d) meet in a point,
that we call S, located at (d = 2.81, N = 19), see Figs.
2 and 3. This means that right at S: T2 = C3 = C2. We
also find that S is a singular point: If we follow smoothly
T2 around a closed loop containing S starting for instance
at P = (d = 2.94, N = 30), see Fig. 3, we do not come
back at T2. More precisely, starting from P and following
an anti-clockwise closed path as in Fig. 3.b, T2 collides on
the line Nc(d) with C3 and disappears. More precisely,
it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
comes C2 after a full rotation around S. This is why we
have claimed above that the fate of T2 when N → ∞
depends on the path followed. From a purely mathemat-
ical point of view, the continuity argument for following
smoothly the FPs everywhere in the (d,N) plane and ex-
hibiting the double-valued structure of T2 and C2 makes
sense only after allowing the FPs to be complex-valued
(or, in a Taylor expansion, the g∗m to be complex). For
instance, let us again consider Fig. 3.b. We start at P
with T2 which is very close to G. Beyond the line Nc(d),
T2 becomes complex. It becomes real again when the
path crosses N ′

c(d) and it is then C2 which is far from G.
If we go on following the same path, C2 remains real all
the way but after the second full rotation, it is T2 again.
The second interesting feature of the curve N ′

c(d) is
that it also becomes vertical at large N while being this
time asymptotic to the d = 4 axis, see Fig. 2. We there-
fore conclude that most probably C3 exists at N = ∞
everywhere for d ∈]3, 4[ and C2 for d ∈]2, 4[. However,
we also find that for larger and larger N in d > 3, the
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where ρ = φiφi/2. Within this approximation, all critical
exponents are accurately computed for all d and N . The
LPA’ is a simpler approximation consisting in setting in
Eq. (4): Yk(ρ) = 0 and Zk(ρ) = Z̄k, a field-independent
field renormalization. From Z̄k is derived the running
anomalous dimension ηt = −∂t log Z̄k that converges at
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in setting Z̄k = 1 which implies η = 0. The RG flow
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T2) expansion for both the LPA and LPA’ and is also
one-loop exact for the LPA’ for N > 1, in the ϵ′ = d −
2 expansion. Most importantly for what follows, even
within the LPA, the flow of the effective potential Uk

is exact at N = ∞. We give the flow of the effective
potential Uk for any N at the LPA in the Supplemental
Material.
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tion for the effective potential: ∂tŨ∗ = 0, Eq. (??), at
the LPA and LPA’. As expected, we find T2 for any N
emerging from G in d = 3−. For sufficiently small values
of N , typically N < 19, we find that we can follow this
FP down to d = 2 using the LPA’. For N > 19, we find
that by decreasing d at fixed N , T2 disappears in a di-
mension dc(N) by collapsing with a 3-unstable FP that
we call C3 as already explained above, see Figs. 2 and 3.
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largeN which makes the LPA flow of Uk exact atN = ∞.
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no rigorous proof, we can safely claim that the existence
of C3 is doubtless and that the curve Nc(d) approaches
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a regular function of ρ at N = ∞, which is not the case
for the BMB FP, which shows a cusp.
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instance N = 33 and we follow the path shown in Fig.
3.a starting at dc(N = 33) = 2.90. We find that C3

exists on this path up to d =3.09 which shows that a
nonperturbative FP can exist in d = 3. In d =3.09, it
collapses with a 2-unstable FP, that we call C2 and both
these FPS do not exist for d > 3.09. The FP C2 cannot
be T2 because T2 does not exist above d = 3. By changing
the value of N , we generate a line where C3 = C2 that
we call N ′

c(d), see Figs. 2 and 3.
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c(d) meet in a point,
that we call S, located at (d = 2.81, N = 19), see Figs.
2 and 3. This means that right at S: T2 = C3 = C2. We
also find that S is a singular point: If we follow smoothly
T2 around a closed loop containing S starting for instance
at P = (d = 2.94, N = 30), see Fig. 3, we do not come
back at T2. More precisely, starting from P and following
an anti-clockwise closed path as in Fig. 3.b, T2 collides on
the line Nc(d) with C3 and disappears. More precisely,
it becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but be-
comes C2 after a full rotation around S. This is why we
have claimed above that the fate of T2 when N → ∞
depends on the path followed. From a purely mathemat-
ical point of view, the continuity argument for following
smoothly the FPs everywhere in the (d,N) plane and ex-
hibiting the double-valued structure of T2 and C2 makes
sense only after allowing the FPs to be complex-valued
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instance, let us again consider Fig. 3.b. We start at P
with T2 which is very close to G. Beyond the line Nc(d),
T2 becomes complex. It becomes real again when the
path crosses N ′

c(d) and it is then C2 which is far from G.
If we go on following the same path, C2 remains real all
the way but after the second full rotation, it is T2 again.
The second interesting feature of the curve N ′

c(d) is
that it also becomes vertical at large N while being this
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　　and     collide and 
vanish

Fixed point structure
　We found two nonperturbative fixed points  
　 (two-unstable) and　（three-unstable),                                    
which do not coincide with G at any d.                  　　　            　

N = Nc(d)

　　と    が衝突し消滅

C2 C3

C2

　　and     collide and 
vanish

The two lines meet  
at S=(d=2.8,N=19) 



The line  
• We can fit this line as NC(d)=3.6/(3-d). 

• Pisarski (1982 PRL) and Osborn-Stergiou (2018 JHEP) 
studied φ6 theory perturbatively and showed that      can 
exist for          

  which agrees with our numerical fit within numerical 
uncertainty. 

• The perturbative calculation  does not capture the 
nonperturbative FP       . 
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Double-valued structure

• Starting from P, we follow　　around a path around the 
point S clockwise. After full rotation it becomes       .　

• Anticlockwise path…        vanishes at 　　　　　and it 
remains complex all along the dashed path. It becomes 
real at 　　　　　and comes back as      . 

C2

C2

N = Nc(d)

After two full rotations we go back to the same FP



• We try to mimic the behavior of the FP T2 along the path ABCDEA 
using  a cubic function f(x) depending θ periodically: 
f(θ+2π)=f(θ) 

• Starting from t2 at (A), we follow this root by continuity all along 
the path, as indicated with black dots. At  θ=2π, t2 has become c2. 

Toy model for the double 
valued structure 
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)

models so far: When decreasing d from d ⇠ 4 down to
d = d

c1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = d

c2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < d

c2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL

The order parameter of O (N)⌦O (2) models consists
of the N ⇥ 2 matrix � = (�1,�2) that satisfies

�
i

· �
j
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ij

(1)

for i, j = 1, 2. Then, the effective Hamiltonian in the
continuum is given by
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ˆ
ddx
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for i, j = 1, 2 can be re-
placed by a soft potential U (�1,�2) whose minima are
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and the Ginzburg-Landau-
Wilson Hamiltonian for STA reads
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Instead of �
i

, it is convenient to work with the invariants
of the O(N)⇥O(2) group that can be chosen as:
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With this choice, the ground state configuration corre-
sponds to ⇢ = const. and ⌧ = 0. Up to the fourth order
U (⇢, ⌧) can be written as

U (⇢, ⌧) =
�

2

(⇢� )2 + µ⌧, (5)

where � and µ are positive coupling constants. A typical
ground state in terms of � below the critical temperature
is given by �

↵,i

=

p
/2�
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III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
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In the following, we introduce a renormalization scale
k and the k�dependent effective action �
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)

models so far: When decreasing d from d ⇠ 4 down to
d = d

c1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = d

c2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < d

c2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL

The order parameter of O (N)⌦O (2) models consists
of the N ⇥ 2 matrix � = (�1,�2) that satisfies
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With this choice, the ground state configuration corre-
sponds to ⇢ = const. and ⌧ = 0. Up to the fourth order
U (⇢, ⌧) can be written as
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III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
? ].

In the following, we introduce a renormalization scale
k and the k�dependent effective action �

k

. The first
step is to introduce a k-dependent partition function Z
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whose minima are given by
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)

models so far: When decreasing d from d ⇠ 4 down to
d = d

c1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = d

c2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < d

c2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.
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With this choice, the ground state configuration corre-
sponds to ⇢ = const. and ⌧ = 0. Up to the fourth order
U (⇢, ⌧) can be written as

U (⇢, ⌧) =
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2

(⇢� )2 + µ⌧, (5)

where � and µ are positive coupling constants. A typical
ground state in terms of � below the critical temperature
is given by �
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III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
? ].

In the following, we introduce a renormalization scale
k and the k�dependent effective action �

k

. The first
step is to introduce a k-dependent partition function Z
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)

models so far: When decreasing d from d ⇠ 4 down to
d = d

c1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = d

c2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < d

c2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL

The order parameter of O (N)⌦O (2) models consists
of the N ⇥ 2 matrix � = (�1,�2) that satisfies
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for i, j = 1, 2. Then, the effective Hamiltonian in the
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for i, j = 1, 2 can be re-
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With this choice, the ground state configuration corre-
sponds to ⇢ = const. and ⌧ = 0. Up to the fourth order
U (⇢, ⌧) can be written as

U (⇢, ⌧) =
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(⇢� )2 + µ⌧, (5)

where � and µ are positive coupling constants. A typical
ground state in terms of � below the critical temperature
is given by �
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III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
? ].

In the following, we introduce a renormalization scale
k and the k�dependent effective action �

k

. The first
step is to introduce a k-dependent partition function Z
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)

models so far: When decreasing d from d ⇠ 4 down to
d = d

c1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = d

c2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < d

c2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL

The order parameter of O (N)⌦O (2) models consists
of the N ⇥ 2 matrix � = (�1,�2) that satisfies

�
i

· �
j

= �
ij

(1)
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continuum is given by

H =

ˆ
ddx

✓
1

2

h
(@�1)

2
+ (@�2)

2
i◆

. (2)

The constraint �
i

· �
j

= �
ij
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With this choice, the ground state configuration corre-
sponds to ⇢ = const. and ⌧ = 0. Up to the fourth order
U (⇢, ⌧) can be written as
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where � and µ are positive coupling constants. A typical
ground state in terms of � below the critical temperature
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III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
? ].

In the following, we introduce a renormalization scale
k and the k�dependent effective action �
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)

models so far: When decreasing d from d ⇠ 4 down to
d = d

c1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = d

c2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < d

c2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL
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of the N ⇥ 2 matrix � = (�1,�2) that satisfies
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III. NPRG EQUATION

The NPRG method is based on Wilson’s idea of in-
tegrating statistical fluctuations step by step. In this
paper, we employ the effective average action method as
an implementation of the NPRG in continuum space [?
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with respect to 1/N and ✏. However the analysis based
on the non-linear sigma model with O (N) ⌦ O (2) sym-
metry did not find C� fixed point near d = 2 and the
reason for this discrepancy on the existence of C� fixed
point has not yet been understood.

In this paper, we revisit the Large-N analysis of
O (N)⌦O (2) models with nonperturbative renormaliza-
tion group (NPRG), focusing on the fate of multicriti-
cal fixed points in lower dimensions. To the best of our
knowledge, there have been no Large-N analyses with
NPRG on multicritical fixed points, although there have
been many on fixed points with only one relevant direc-
tion. In the latter cases, including C+, the coupling con-
stant of a operator for those fixed points obeys a scaling
with respect to 1/N whose exponent can be deduced from
the dimension of the operator. This property consider-
ably simplifies the flow equations of coupling constants
in the Large-N limit, which makes the exact treatment
possible: The local potential approximation becomes ex-
act and the RG flow equation of the coupling constant of
a operator is expressed as a closure within the set of cou-
pling constants for the operators with lower order. We
show that, in the Large-N limit, the coupling constants
for multicritical fixed points obey nontrivial scalings with
respect to 1/N , which can not be deduced from the di-
mension of the operator, as opposed to C+.

With the refined version local potential approximation
(LPA’) for the NPRG equation for the effective potential,
we solve the multicritical fixed point solutions with finite
but large N and find the following unexpected bifurcation
behavior of three multicritical fixed points, two of which
have never been found in the studies of O (N) ⌦ O (2)

models so far: When decreasing d from d ⇠ 4 down to
d = d

c1 (N) ⇠ 3, C� fixed point vanishes when it collides,
around d ⇠ 3, with another multicritical fixed point with
three relevant directions (We call it C�� fixed point in
this paper), which has never been found so far. When in-
creasing d up to d = d

c2 (N) ⇠ 3.2, C�� fixed point van-
ishes when it collides yet another multicritical fixed point
with two relevant directions (We call it C��� fixed point
in this paper), which has been never found so far either.
C��� fixed point exists for all 2 < d < d

c2 (N) ⇠ 3.2.
The reason why C��� was not captured near d = 2 by
the previous non-linear sigma model study is discussed.

We verify these findings by performing Large-N anal-
ysis of the NPRG flow equation taking account the non-
trivial scalings for the coupling constants of C�, C��
and C��� fixed points. The resulting large-N limit flow
equations is shown to well describe the above bifurcation
behaviors. It is shown that the anomolous dimension ⌘
and another coupling ! in front of a derivative term are
negligible under any of these scalings, which indicates
that LPA approximation becomes exact in the Large-N
limit as it is the case for C+ fixed point.

Our results on O (N)⌦O (2) GLW model, which is one
of the simplest field theoretical models which describe
multicritical behavior, suggest that there is something
missed in the previous field theoretical treatment of mul-

ticritical fixed points, if our result is exact in the Large-N
limit as we expect. We discuss possible reasons for the
disagreement between our study and the previous Large-
N analyses based on GLW model up to the forth order
terms.

II. MODEL

The order parameter of O (N)⌦O (2) models consists
of the N ⇥ 2 matrix � = (�1,�2) that satisfies
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FIG. 4. O(N)⌦O(2) model. In the gray region, starting in
d = 4 at N = 21.8, no FP at all is found. Above this region
and for d close to 4, both the critical C+ and the tricritical
C� FPs are found. The line on the right joining the squares
indicates the region where two nonperturbative FPs, M2 and
M3, appear. On the line joining the crosses, C� and M3

collapse. In each region, we indicate the FPs that are present.

argument for following smoothly the FPs everywhere in
the (d,N) plane and exhibiting the double-valued struc-
ture of T2 and C2 makes sense only after allowing the
FPs to be complex-valued (or, in a Taylor expansion, the
g⇤
m

to be complex). For instance, let us again consider
Fig. 3.b. We start at P with T2 which is very close to G.
Beyond the line N

c

(d), T2 becomes complex. It becomes
real again when the path crosses N 0

c

(d) and it is then
C2 which is far from G. If we go on following the same
path, C2 remains real all the way but after the second
full rotation, it is T2 again.

The second interesting feature of the curve N 0
c

(d) is
that it also becomes vertical at large N while being this
time asymptotic to the d = 4 axis, see Fig. 2. We there-
fore conclude that most probably C3 exists at N = 1
everywhere for d 2]3, 4[ and C2 for d 2]2, 4[. However,
we also find that for larger and larger N in d > 3, the
FP potentials of C2 and C3 become steeper and steeper
at ⇢ = 0 which indicates the presence of a singularity at
the origin in their FP potential or its derivatives. The
second derivative of the two potentials with respect to ⇢
becomes also discontinuous at a point ⇢ 6= 0 in the large
N limit. These singularities are a possible explanation of
the fact that these two fixed points were not found previ-
ously in large N analyses[11–14, 16]. Using the LPA’, we
have checked that the line N 0

c

(d) is only slightly modified
compared to the LPA results because ⌘ is small all along
this line. It makes us confident that the overall picture
above is not an artefact of our truncations.

The double-valued character of the FPs exhibited
above concerns only C2 and T2 and we could wonder
whether the same thing occurs for C3. We have indeed
found two other nonperturbative FPs that are 3- and 4-
unstable, two analogues of the curves N

c

(d) and N 0
c

(d)
where these FPs show up and annihilate as well as a

singular point S0 where the two curves meet and that
shares many similarities with S. It is of course tempt-
ing to imagine that this kind of structure repeats for the
4-unstable FP found that itself involves a 5-unstable FP
and so on and so forth.

A natural question is whether the intricate FP struc-
ture presented above is specific to the O(N) models or
is generic. To shed some light on this question, we
have therefore considered the O(N)⌦O(2) model which
is relevant for frustrated antiferromagnetic systems [35–
37]. The order parameter of this model is the N ⇥ 2
matrix � = ('1,'2) [38] and the Hamiltonian is the
sum of the usual kinetic terms and of the potential
U = r('2

1+'2
2)+u('2

1+'2
2)

2+v('2
1'

2
2�('1 ·'2)2). By

a suitable choice of r, u and v the symmetry is sponta-
neously broken down to O(N�2)⌦O(2). For N typically
larger than 21.8, two FPs are found in d = 4�✏, a critical
one, C+, that can be followed smoothly down to d = 2
and another one, C�, which is tricritical [39, 40]. These
FPs are also found in the large N expansion in all dimen-
sions between 2 and 4 [40–42]. However, using the LPA’,
we find for C� a picture which is very much similar to
the O(N) case, see Fig. 4: (i) There exists a line where
C� collapses with a 3-unstable FP, that we call M3; (ii)
this line is asymptotic to the d = 3 axis, and (iii) M3

appears on another line together with a 2-unstable FP
that we call M2 [43].

To conclude we have found that the multicritical FP
structure of both the O(N) and O(N)⌦O(2) models is
much more complicated than usually believed. In par-
ticular, we have shown that several nonpertubative FPs
exist in d = 3 that were not previously found. Although
they also exist at N = 1 on a finite interval of dimen-
sions they were not found by previous direct studies of
this case and this is clearly a subject that must be fur-
ther studied, see however [22]. The existence and role of
possible singularities of the FP potential of C2 and C3

should be studied in the future as well. It would also be
interesting to study the d = 3 case and figure out what
the basins of attraction of both C2 and C3 are to know
whether the multicriticality of some lattice models could
be described by these FPs. The NPRG, here again, is a
method of choice for this study but the conformal boot-
strap program could probably definitively prove/disprove
the existence of the C2 and C3 FPs in d = 3. We can also
expect that there are other nonperturbative FPs that col-
lide with T

n

(n = 3, 4, · · · ) as C2 does with T2. They are
also left for future study. Finally, an intriguing question
is: Could it be that what we have found above has for
a known physical system an impact on its criticality or
multicriticality?

We acknowledge H. Chaté, N. Defenu, C. Duclut, N.
Dupuis, J.-M. Maillard, H. Osborn, R. Pisarski, G. Tar-
jus and M. Tissier for discussions and/or advices about
the manuscript.
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Summary
• We have found that the fixed point structure of both   
and                         models is much more complicated 
than widely believed.  

• In particular, we have found several nonperturbative FPs 
in d=3 that were not found previously. 

•        and       have double-valued structure in (d,N) space. 

• This questions the usual Large-N approach. O(N) models 
are not soluble in general even at               . N = 1
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